



## **Testing**

- May better indicate how animal management and other factors actually affect nutrient content.
- Good sampling technique is critical for having confidence in test results.
- Critical for estimating nutrient loading



#### **TECHNIQUE**

- Sample from loaded spreaders is best
- Variability
  - Greater from barnyard and pack vs. loaded spreader
- Take several samples helps reduce variability.
- Variability exists even under the most ideal conditions

## 5-gallon bag

- Thoroughly mixed
- 24 subsamples
  - Still high variability
  - Less with liquid
  - More with solids

#### TIME - Dairy Manure

- Over 3-yr period
  - Little change in N
  - Larger change in K
- Consistent Results Possible
  - With good representative sampling
  - Same herd management



#### TIME - Chicken Manure

- Over 5-month period
  - High variability for all parameters
- Inconsistent results due to
  - Seasonal changes in feed
  - 5 to 6 batches of birds before sampling

#### **Use Long-term Farm Averages**

- Only if herd and manure management practices have not changed.
- IF no baseline
  - Develop a historic record over 2 3 years
  - Sample just prior to land application
  - Note time of year to monitor potential seasonal variability.

# Lagoon water N variation over time





#### SAMPLING RECOMMENDATIONS



#### Manure samples from private & public labs



#### However

- Most livestock operations still don't sample manure. Why?
  - Sample Heterogeneity
  - Inherent difficulty in obtaining a representative sample



#### **General Guideline**

- Avoid Heterogeneity by not sampling:
  - Bedded packs
  - Unagitated liquid storage facilities
- Poorly sampled systems will not improve accuracy of estimating N and P loading
- Adequate subsampling very important

#### RECOMMENDED PROCEDURES

- Mixing a solid sample
  - Pile manure
  - Shovel from outside to inside until well mixed
- Fill a 1-gallon heavy-duty sealable plastic bag half full with composite sample
- Squeeze air out, close, and seal
- Store below freezing unless delivered immediately.

## Sample While Loading

- Take at least 5 samples while loading several spreader loads
- Combine to form one composite sample
- Thoroughly mix the composite sample and remove a 1-lb subsample using a one-gallon plastic bag.
- Do not sample directly from pack or bed

## Sample While Spreading

- Take at least 5 samples while loading several spreader loads
- Combine to form one composite sample
- Thoroughly mix the composite sample and remove a 1-lb subsample using a one-gallon plastic bag.
- Do not sample directly from pack or bed

### Sample Stockpiled Manure

Take 10 sub-samples from different locations around the pile at least 18-inches below the surface.
Mix in a 5-gallon pail
Place a 1-lb composite sample in a gallon plastic bag.

# Number of Sub-samples 10% error - Colorado study

| Type                  | TKN       | P  | K   | NH <sub>4</sub> | NO <sub>3</sub> |  |  |
|-----------------------|-----------|----|-----|-----------------|-----------------|--|--|
| Beef                  | <b>17</b> | 20 | 32  | 121             | 692             |  |  |
| Dairy compost         |           | 5  | 119 | 92              | 191             |  |  |
| Dairy manure          |           | 49 |     |                 | 1914            |  |  |
| Curkey                |           |    | 13  |                 |                 |  |  |
| Inorg. N not recommen |           |    |     |                 |                 |  |  |

## Number of Subsamples for TKN

| Type       | CI (95%)  | Std Dev | Subsamples |
|------------|-----------|---------|------------|
| Pen        | 1.5 – 2.6 | 0.22    | 7          |
| Separator  | 0.3 - 3.0 | 0.72    | -          |
| Stockpiled | 1.0 – 1.9 | 0.35    | 30         |
| Composted  | 0.1 - 2.0 | 0.06    | 2          |

From NM 1999 survey

## Pounds per dry ton



- ☐ Ash
- Carbon
- Sodium
- Org. N
- Inorg. N

- S
- Ca Ca
- □ Mg
- Zn
- Fe
- □ Mn
- Cu
- □ CI



## Mineralization



Org-N

Time

**Microbes** 

**Moisture** 

**Warm Temperature** 

NH<sub>4</sub>-N

Soil

Microbes

NO<sub>3</sub>-N



- In the following procedures thoroughly mix
- A plunger works well for mixing liquids in a 5-gallon pail.
- Fill a 1 qt plastic bottle not more than ¾
  full with the composite sample
- Store in freezer if not delivered to lab immediately.

## LIQUIDS – from storage

- Agitate before sampling.
- Collect at least 5 samples in a 5-gallon pail
- Stratification
  - N and K more concentrated in the top liquid
  - P more concentrated in bottom solids



- Place buckets around field
- Collect at least 5 samples
- Transfer on composite sub-sample to a one-quart bottle after mixing with a plunger

### **Selected Slurry Characteristics**

|           | Org-N (mg/L) | NH <sub>4</sub> -N (mg/L) | Nitrate-N<br>(mg/L) | Cl (mg/L) | TDS<br>mg/L     |
|-----------|--------------|---------------------------|---------------------|-----------|-----------------|
| Median    | 142          | 203                       | 0.10                | 353       | 290             |
| Ave       | 165          | 246                       | 0.14                | 486       | 3<br>3<br>49    |
| Max       | <b>760</b>   | 998                       | 0.8                 | 2086      | <b>1210</b>     |
| Min       | 1            | 32                        | 0.1                 | 106       | $\frac{1}{279}$ |
| Std. Dev. | 140          | 154                       | 0.1                 | 373       | 215             |
|           |              |                           |                     |           | 6               |

**November 2003 NM** 





## Water Quality

- Electrical Conductivity
  - 4.8 mmhos/cm
- pH
  - **7.8**
- Solids
  - 0.4 % by volume
- Total Dissolved Solids
  - 2903 ppm
- Chloride
  - 353 ppm

- Irrigation purposes
  - < 3 mmhos/cm
- pH
  - **< 8**

- TDS
  - **<2000**
- Chloride
  - <69 ppm

## Lagoon Water N - Nov 2003







Relative Basis



#### Lagoon Water N



### Lagoon Water P & K



#### SAMPLE IDENTIFICATION

- Farm
- Date
- Method of Application
- What tests
- Keep frozen until shipped or delivered to lab.
- Ship early in the week (Mon Wed) & avoid holidays and weekends.



#### **Test Minimums**

- Total Kjeldahl N
  - Organic-N +Ammonium-N
- Nitrate-N
- Chloride

- Phosphate-P or Total P
- Potassium-K or Total K
- Total salt
- Sodium

 Liquids may require preservation by pH reduction